ID |
Status |
Summary |
129
|
Done |
NumPy version is lower than needed: 1.10.0.dev0+0752872 < 1.6
Type-Defect
Priority-Medium
|
128
|
New |
Installing numexpr on to my Mac 10.9.4 Maverick
Type-Defect
Priority-Medium
|
127
|
New |
Numexpr doesn't seem to be installed with MKL through pip
Type-Defect
Priority-Medium
|
126
|
New |
arr.dtype.type hash differs from numpy hash for SOME dtypes
Type-Defect
Priority-Medium
|
125
|
Accepted |
IMPORTANT: *** Do not file tickets here anymore! ***
Type-Other
Priority-Critical
|
124
|
New |
Disable tests that use multithreading on sparc
Type-Defect
Priority-Medium
|
123
|
New |
numexpr unstable due to use of platform.machine()
Type-Defect
Priority-Medium
|
122
|
Invalid |
build on mac 10.9, python 3.3 failed
Type-Defect
Priority-Medium
|
121
|
New |
Numexpr query with empty string does not work (discovered using pytables)
Type-Defect
Priority-Medium
|
120
|
New |
add min and max functions
Type-Defect
Priority-Medium
|
119
|
Done |
User's guide seems to have disappeared - can it be restored
Type-Defect
Priority-Medium
|
118
|
New |
_context threadlocal incompatible with eventlet green threads
Type-Defect
Priority-Medium
|
117
|
New |
Adding conj function
Type-Defect
Priority-Medium
|
116
|
Fixed |
Build failure on s390 architecture
Type-Defect
Priority-Medium
|
115
|
Fixed |
NumExpr 2.2.1 should be compatible with PyTables <= 2.4
Type-Defect
Priority-Medium
|
114
|
Fixed |
Fix test failures with numpy 1.8
Type-Defect
Priority-Medium
|
113
|
New |
Add support for Yeppp!
Type-Defect
Priority-Medium
|
112
|
Invalid |
numexpr.evaluate result type != numpy type
Type-Defect
Priority-Medium
|
111
|
Fixed |
return TestResult in numexpr.test()
Type-Defect
Priority-Medium
|
110
|
Fixed |
No way to limit the number of threads before importing / please honour OMP_NUM_THREADS
Type-Defect
Priority-Medium
|
109
|
Fixed |
Missing license files
Type-Defect
Priority-Medium
|
108
|
Invalid |
Error in FindNumPy.cmake
Type-Defect
Priority-Medium
|
107
|
Fixed |
Modulus with 0 and integer array causes floating point exception
Type-Defect
Priority-Medium
|
106
|
New |
int8 or int16 support
Type-Enhancement
Priority-Medium
|
105
|
New |
add an example of using strings (literals) on Python3
Type-Enhancement
Priority-Medium
|
104
|
Fixed |
Patch for /FindNumPy.cmake
Type-Patch
|
103
|
Fixed |
result in-place enhancement
Type-Enhancement
Priority-Medium
|
102
|
Fixed |
better library suffix finding in FindPythonLibsNew
Type-Defect
Priority-Medium
|
101
|
Invalid |
Can't install numexpr, creating dist error: could not create 'dist': Permission denied
Type-Defect
Priority-Medium
|
100
|
New |
numexpr-2.1 does not build with Python 3.2 (builds fine with Python 2.7)
Type-Defect
Priority-Medium
|
99
|
New |
Solve for MKL_Get_Version_String while build numexpr-2.1 with Intel MKL VML
Type-Defect
Priority-Medium
|
98
|
Invalid |
python segfault from doubly defined procedure + numexpr
Type-Defect
Priority-Medium
|
97
|
Fixed |
only one core used when operating on arrays returned by np.ogrid
Type-Defect
Priority-Medium
|
96
|
New |
Algebra for boolean values doesn't work on arrays (interpret as 0 / 1 integer)
Type-Defect
Priority-Medium
|
95
|
Fixed |
Solve for MKLGetVersionString while using Intel MKL VML support in numexpr-2.0.1
Type-Defect
Priority-Medium
|
94
|
Fixed |
can't build with vml on linux
Type-Defect
Priority-Medium
|
93
|
New |
Input/output to same array should work
Type-Defect
Priority-Medium
|
92
|
New |
where() does not work with booleans and strings due to check in numexpr.expressions.commonKind
Type-Defect
Priority-Medium
|
91
|
Fixed |
NumExpr and Python 3
Type-Defect
Priority-Medium
|
90
|
New |
ImportError: cannot import name _get_vml_version
Type-Defect
Priority-Medium
|
89
|
New |
Add np.trunc, np.ceil equivalents
Type-Defect
Priority-Medium
|
88
|
New |
Make numexpr installable pip
Type-Defect
Priority-Medium
|
87
|
New |
Add np.sign function
Type-Defect
Priority-Medium
|
86
|
New |
Add minimum, maximum functions
Type-Defect
Priority-Medium
|
85
|
New |
multidimensional output
Type-Defect
Priority-Medium
|
84
|
New |
give option to use optimized object
Type-Defect
Priority-Medium
|
83
|
New |
Can evalute expersions with record arrays
Type-Defect
Priority-Medium
|
82
|
Invalid |
AttributeError: 'OpNode' object has no attribute 'sum'
Type-Defect
Priority-Medium
|
81
|
New |
numexpr.evaluate('(a*1j)+0')
Type-Defect
Priority-Medium
|
80
|
New |
numexpr is not thread-safe
Type-Defect
Priority-Medium
|
79
|
New |
sum and prod incorrect results
Type-Defect
Priority-Medium
|
78
|
New |
support accumulate
Type-Enhancement
Priority-Medium
|
77
|
Accepted |
failing unittests / crashes on GNU/Linux Debian sparc arch (in threaded mode)
Type-Defect
Priority-Medium
|
76
|
Accepted |
-sum(a) does not work
Type-Defect
Priority-Medium
|
75
|
Fixed |
Test failure on Hurd and KFreeBSD
Type-Defect
Priority-Medium
|
74
|
New |
Full support of Intel VML functions
Type-Defect
Priority-Medium
|
73
|
New |
calculation of sum is slow and uses only one core
Type-Defect
Priority-Medium
|
72
|
New |
Test failure of 1.4.2 on 32bit platforms
Type-Defect
Priority-Medium
|
71
|
Accepted |
float constant changes to integer in a**-1.0
Type-Defect
Priority-Medium
|
70
|
Invalid |
incorrect usage of inetger division
Type-Defect
Priority-Medium
|
69
|
Fixed |
Reduction failure
Type-Defect
Priority-Medium
|
68
|
Accepted |
ones_like, copy and fmod are undocumented
Type-Defect
Priority-Medium
|
67
|
Accepted |
Numexpr 2.0 only accepts 31 different variables as input
Type-Defect
Priority-Medium
|
66
|
Fixed |
extension to necompiler.evaluate breaks Python 2.4 + 2.5 compatibility
Type-Defect
Priority-Medium
|
65
|
Fixed |
MAX_THREADS not large enough
Type-Defect
Priority-Medium
|
64
|
Verified |
numexpr 2.0rc1 does not accept empty arrays as input
Type-Defect
Priority-Critical
|
63
|
Fixed |
Wrong result produced when input array has a negative stride
Type-Defect
Priority-Medium
|
62
|
Fixed |
Licence boilerplates missing
Type-Defect
Priority-Medium
|
61
|
New |
where function with implicit booleans
Type-Defect
Priority-Medium
|
60
|
WontFix |
Support Indexing
Type-Enhancement
Priority-Medium
|
59
|
Verified |
floats without decimals are evaluted as integers
Type-Defect
Priority-Low
|
58
|
Verified |
Explicit type conversion functions
Type-Enhancement
Priority-Medium
|
57
|
New |
Add conjugate() function
Type-Enhancement
Priority-Low
|
56
|
Fixed |
Mechanism to store expressions in already existing ndarrays
Type-Enhancement
Priority-Medium
|
55
|
Fixed |
Trivial typographic error
Type-Defect
Priority-Medium
|
54
|
Accepted |
Unable to build on OSX 10.7 when linking with MKL
Type-Defect
Priority-Medium
|
53
|
Fixed |
Patch for /trunk/numexpr/cpuinfo.py
Type-Patch
|
52
|
Fixed |
cpuinfo.getoutput output isn't defined
Type-Defect
Priority-Medium
|
51
|
Verified |
Is building with MSVC possible?
Type-Defect
Priority-Medium
|
50
|
Fixed |
trunk fails to build on MingW
Type-Defect
Priority-Medium
|
49
|
Fixed |
Slow down compared to numpy
Type-Defect
Priority-Medium
|
48
|
Invalid |
Build fails on OSX 10.6.6
Type-Defect
Priority-Medium
|
47
|
Fixed |
numexpr does not parallelize well long column, short row size array
Type-Defect
Priority-Medium
|
46
|
WontFix |
support for class instant variables. (self.abc)
Type-Enhancement
Priority-Medium
|
45
|
WontFix |
Numexpr fails most tests with python 2.4
Type-Defect
Priority-Medium
|
44
|
Fixed |
possible build problem with gcc 4.5.2?
Type-Defect
Priority-Medium
|
43
|
Verified |
Optimization of "compilation phase" through a better hash
Type-Defect
Priority-Medium
|
42
|
Verified |
Potential missing Py_END_ALLOW_THREADS
Type-Defect
Priority-Medium
|
41
|
Verified |
sum big array causes segmentation fault
Type-Defect
Priority-Medium
|
40
|
Invalid |
numexpr crashes python on win32 (numexpr-1.4.1.win32-py2.6.exe)
Type-Defect
Priority-Medium
|
39
|
Verified |
The number of threads should be set only for Numexpr native pthreads, not for VML
Type-Enhancement
Priority-Medium
|
38
|
Invalid |
[PATCH] Loop optimization to gain ~15% performance
Type-Defect
Priority-Medium
|
37
|
Verified |
Raising array containing 0s to a negative power causes core dump in numexpr 1.4
Type-Defect
Priority-Medium
|
36
|
Verified |
Multi-threading code should be disabled for small arrays
Type-Defect
Priority-Medium
|
35
|
Fixed |
Numexpr should release the GIL during computations
Type-Enhancement
Priority-High
|
34
|
Fixed |
No AMD64 builds for numexpr 1.4 and Python 2.7
Type-Defect
Priority-Medium
|
33
|
Verified |
Numexpr does not work correctly when run in sub-processes
Type-Defect
Priority-Medium
OpSys-All
|
32
|
WontFix |
symbol lookup error: /usr/pkg/fortran90/intel/mkl/10.2.5.035/lib/em64t/libmkl_vml_mc2.so: undefined symbol: mkl_serv_mkl_malloc
Type-Defect
Priority-Medium
|
31
|
Fixed |
numexpr 1.4 does not build (as is) on Mingw
Type-Defect
Priority-Medium
|
30
|
Fixed |
Broadcasting does not work for parallel code correctly
Type-Defect
Priority-Medium
OpSys-All
|