Introduction
LaTeX IME in ibus-table is using the commands in LaTeX to input lots of symbols. I think this is useful, because I familar some commands in LaTeX for input mathematic symbols. E.g. in LaTeX, we use \sigma to input σ and \Omega to input Ω. Obviously, we only use ascii to represent symbols, and this handy methods can make our symbol inputs easy :)
Remenber, we only input symbols not mathemathcal expression pictures.
What we can input and how
Here is the key stroks and inputted symbols, I know, it is a bit long :)
|\
|\
|
|:--|:--|
|\\
|\
|
|\backslash
|\
|
|\hat
|^
|
|\_
|_
|
|\grave
|`````|
|\tilde
|~
|
|\pounds
|£
|
|\S
|§
|
|\ddot
|¨
|
|\lnot
|¬
|
|\bar
|¯
|
|\circ
|∘
|
|\circ
|°
|
|\pm
|±
|
|\acute
|´
|
|\P
|¶
|
|\cdot
|·
|
|\frac14
|¼
|
|\frac12
|½
|
|\frac34
|¾
|
|\times
|×
|
|\div
|÷
|
|\Gamma
|Γ
|
|\Delta
|Δ
|
|\Theta
|Θ
|
|\Lambda
|Λ
|
|\Xi
|Ξ
|
|\Pi
|Π
|
|\Sigma
|Σ
|
|\Upsilon
|ϒ
|
|\Phi
|Φ
|
|\Psi
|Ψ
|
|\Omega
|Ω
|
|\alpha
|α
|
|\beta
|β
|
|\gamma
|γ
|
|\delta
|δ
|
|\epsilon
|ϵ
|
|\zeta
|ζ
|
|\eta
|η
|
|\theta
|θ
|
|\iota
|ι
|
|\kappa
|κ
|
|\lambda
|λ
|
|\mu
|μ
|
|\nu
|ν
|
|\xi
|ξ
|
|\pi
|π
|
|\rho
|ρ
|
|\sigma
|σ
|
|\tau
|τ
|
|\upsilon
|υ
|
|\phi
|φ
|
|\chi
|χ
|
|\psi
|ψ
|
|\omega
|ω
|
|\varepsilon
|ε
|
|\vartheta
|ϑ
|
|\varphi
|ϕ
|
|\varpi
|ϖ
|
|\varsigma
|ϛ
|
|\varrho
|ϱ
|
|\dag
|†
|
|\ddag
|‡
|
|\bullet
|•
|
|\dots
|…
|
|_1
|₁
|
|_2
|₂
|
|_3
|₃
|
|_4
|₄
|
|_5
|₅
|
|_6
|₆
|
|_7
|₇
|
|_8
|₈
|
|_9
|₉
|
|_0
|₀
|
|_+
|₊
|
|_-
|₋
|
|_=
|₌
|
|_(
|₍
|
|_)
|₎
|
|_a
|ₐ
|
|_e
|ₑ
|
|_o
|ₒ
|
|_x
|ₓ
|
|^0
|⁰
|
|^i
|ⁱ
|
|^1
|¹
|
|^2
|²
|
|^3
|³
|
|^4
|⁴
|
|^5
|⁵
|
|^6
|⁶
|
|^7
|⁷
|
|^8
|⁸
|
|^9
|⁹
|
|^+
|⁺
|
|^-
|⁻
|
|^=
|⁼
|
|^(
|⁽
|
|^)
|⁾
|
|^n
|ⁿ
|
|\mathbbC
|ℂ
|
|\mathbbH
|ℍ
|
|\mathbbN
|ℕ
|
|\mathbbP
|ℙ
|
|\mathbbQ
|ℚ
|
|\mathbbR
|ℝ
|
|\mathbbZ
|ℤ
|
|\mathcalE
|ℰ
|
|\mathcalF
|ℱ
|
|\mathcalg
|ℊ
|
|\mathcalH
|ℋ
|
|\mathcalI
|ℐ
|
|\mathcalL
|ℒ
|
|\mathcalM
|ℳ
|
|\mathcalR
|ℛ
|
|\mathcalB
|ℬ
|
|\mathfrakH
|ℌ
|
|\mathfrakR
|ℜ
|
|\mathfrakC
|ℭ
|
|\mathfrakZ
|ℨ
|
|\hbar
|ℏ
|
|\Im
|ℑ
|
|\ell
|ℓ
|
|\wp
|℘
|
|\Re
|ℜ
|
|\mho
|℧
|
|\Finv
|Ⅎ
|
|\aleph
|ℵ
|
|\beth
|ℶ
|
|\gimel
|ℷ
|
|\daleth
|ℸ
|
|\imath
|𝚤
|
|\jmath
|𝚥
|
|\frac13
|⅓
|
|\frac23
|⅔
|
|\frac15
|⅕
|
|\frac25
|⅖
|
|\frac35
|⅗
|
|\frac45
|⅘
|
|\frac16
|⅙
|
|\frac56
|⅚
|
|\frac18
|⅛
|
|\frac38
|⅜
|
|\frac58
|⅝
|
|\frac78
|⅞
|
|\frac1
|⅟
|
|\leftarrow
|←
|
|\uparrow
|↑
|
|\rightarrow
|→
|
|\downarrow
|↓
|
|\leftrightarrow
|↔
|
|\updownarrow
|↕
|
|\nwarrow
|↖
|
|\nearrow
|↗
|
|\searrow
|↘
|
|\searrow
|↙
|
|\nleftarrow
|↚
|
|\nrightarrow
|↛
|
|\leadsto
|↝
|
|\twoheadleftarrow
|↞
|
|\twoheadrightarrow
|↠
|
|\leftarrowtail
|↢
|
|\rightarrowtail
|↣
|
|\mapsto
|↦
|
|\hookleftarrow
|↩
|
|\hookrightarrow
|↪
|
|\looparrowleft
|↫
|
|\looparrowright
|↬
|
|\leftrightsquigarrow
|↭
|
|\nleftrightarrow
|↮
|
|\Lsh
|↰
|
|\Rsh
|↱
|
|\curvearrowleft
|↶
|
|\curvearrowright
|↷
|
|\circlearrowleft
|↺
|
|\circlearrowright
|↻
|
|\leftharpoonup
|↼
|
|\leftharpoondown
|↽
|
|\upharpoonright
|↾
|
|\upharpoonleft
|↿
|
|\rightharpoonup
|⇀
|
|\rightharpoondown
|⇁
|
|\downharpoonright
|⇂
|
|\downharpoonleft
|⇃
|
|\rightleftarrows
|⇄
|
|\leftrightarrows
|⇆
|
|\leftleftarrows
|⇇
|
|\upuparrows
|⇈
|
|\rightrightarrows
|⇉
|
|\downdownarrows
|⇊
|
|\leftrightharpoons
|⇋
|
|\rightleftharpoons
|⇌
|
|\nLeftarrow
|⇍
|
|\nLeftrightarrow
|⇎
|
|\nRightarrow
|⇏
|
|\Leftarrow
|⇐
|
|\Uparrow
|⇑
|
|\Rightarrow
|⇒
|
|\Downarrow
|⇓
|
|\Leftrightarrow
|⇔
|
|\Updownarrow
|⇕
|
|\Lleftarrow
|⇚
|
|\rightsquigarrow
|⇝
|
|\dashleftarrow
|⇠
|
|\dashrightarrow
|⇢
|
|\forall
|∀
|
|\complement
|∁
|
|\partial
|∂
|
|\exists
|∃
|
|\nexists
|∄
|
|\emptyset
|∅
|
|\Delta
|∆
|
|\nabla
|∇
|
|\in
|∈
|
|\notin
|∉
|
|\in
|∊
|
|\ni
|∋
|
|\not\ni
|∌
|
|\ni
|∍
|
|\blacksquare
|∎
|
|\prod
|∏
|
|\amalg
|∐
|
|\sum
|∑
|
|\mp
|∓
|
|\dotplus
|∔
|
|\setminus
|∖
|
|\ast
|∗
|
|\bullet
|∙
|
|\surd
|√
|
|\sqrt
|√
|
|\sqrt[3]
|∛
|
|\sqrt[4]
|∜
|
|\propto
|∝
|
|\infty
|∞
|
|\angle
|∠
|
|\measuredangle
|∡
|
|\sphericalangle
|∢
|
|\mid
|∣
|
|\nmid
|∤
|
|\parallel
|∥
|
|\nparallel
|∦
|
|\wedge
|∧
|
|\vee
|∨
|
|\cap
|∩
|
|\cup
|∪
|
|\int
|∫
|
|\iint
|∬
|
|\iiint
|∭
|
|\oint
|∮
|
|\oiint
|∯
|
|\oiiint
|∰
|
|\therefore
|∴
|
|\because
|∵
|
|\stackrel
|∸
|
|\sim
|∼
|
|\backsim
|∽
|
|\wr
|≀
|
|\nsim
|≁
|
|\simeq
|≃
|
|\not\simeq
|≄
|
|\cong
|≅
|
|\ncong
|≇
|
|\approx
|≈
|
|\not\approx
|≉
|
|\approxeq
|≊
|
|\asymp
|≍
|
|\Bumpeq
|≎
|
|\bumpeq
|≏
|
|\doteq
|≐
|
|\doteqdot
|≑
|
|\fallingdotseq
|≒
|
|\risingdotseq
|≓
|
|\eqcirc
|≖
|
|\circeq
|≗
|
|\stackrel
|≘
|
|\stackrel
|≙
|
|\stackrel
|≚
|
|\stackrel
|≛
|
|\triangleq
|≜
|
|\defeq
|≝
|
|\stackrel
|≞
|
|\stackrel
|≟
|
|\neq
|≠
|
|\equiv
|≡
|
|\not\equiv
|≢
|
|\leq
|≤
|
|\geq
|≥
|
|\leqq
|≦
|
|\geqq
|≧
|
|\lneqq
|≨
|
|\gneqq
|≩
|
|\ll
|≪
|
|\gg
|≫
|
|\between
|≬
|
|\not\asymp
|≭
|
|\nless
|≮
|
|\ngtr
|≯
|
|\nleq
|≰
|
|\ngeq
|≱
|
|\lesssim
|≲
|
|\gtrsim
|≳
|
|\not\lesssim
|≴
|
|\not\gtrsim
|≵
|
|\lessgtr
|≶
|
|\gtrless
|≷
|
|\not\lessgtr
|≸
|
|\not\gtrless
|≹
|
|\prec
|≺
|
|\succ
|≻
|
|\preccurlyeq
|≼
|
|\succcurlyeq
|≽
|
|\precsim
|≾
|
|\succsim
|≿
|
|\nsucc
|⊀
|
|\nprec
|⊁
|
|\subset
|⊂
|
|\supset
|⊃
|
|\not\subset
|⊄
|
|\not\supset
|⊅
|
|\subseteq
|⊆
|
|\supseteq
|⊇
|
|\nsubseteq
|⊈
|
|\nsupseteq
|⊉
|
|\subsetneq
|⊊
|
|\supsetneq
|⊋
|
|\uplus
|⊎
|
|\sqsubset
|⊏
|
|\sqsupset
|⊐
|
|\sqsubseteq
|⊑
|
|\sqsupseteq
|⊒
|
|\sqcap
|⊓
|
|\sqcup
|⊔
|
|\oplus
|⊕
|
|\ominus
|⊖
|
|\otimes
|⊗
|
|\oslash
|⊘
|
|\odot
|⊙
|
|\circledcirc
|⊚
|
|\circledast
|⊛
|
|\circleddash
|⊝
|
|\boxplus
|⊞
|
|\boxminus
|⊟
|
|\boxtimes
|⊠
|
|\boxdot
|⊡
|
|\vdash
|⊢
|
|\dashv
|⊣
|
|\top
|⊤
|
|\perp
|⊥
|
|\bot
|⊥
|
|\vDash
|⊧
|
|\models
|⊨
|
|\Vdash
|⊩
|
|\Vvdash
|⊪
|
|\nvdash
|⊬
|
|\nvDash
|⊭
|
|\not\Vdash
|⊮
|
|\nVdash
|⊯
|
|\lhd
|⊲
|
|\rhd
|⊳
|
|\unlhd
|⊴
|
|\unrhd
|⊵
|
|\multimapdotbothA
|⊶
|
|\multimapdotbothB
|⊷
|
|\multimap
|⊸
|
|\intercal
|⊺
|
|\veebar
|⊻
|
|\barwedge
|⊼
|
|\bigwedge
|⋀
|
|\bigvee
|⋁
|
|\bigcap
|⋂
|
|\bigcup
|⋃
|
|\diamond
|⋄
|
|\cdot
|⋅
|
|\star
|⋆
|
|\divideontimes
|⋇
|
|\bowtie
|⋈
|
|\ltimes
|⋉
|
|\rtimes
|⋊
|
|\leftthreetimes
|⋋
|
|\rightthreetimes
|⋌
|
|\backsimeq
|⋍
|
|\curlyvee
|⋎
|
|\curlywedge
|⋏
|
|\Subset
|⋐
|
|\Supset
|⋑
|
|\Cap
|⋒
|
|\Cup
|⋓
|
|\pitchfork
|⋔
|
|\lessdot
|⋖
|
|\gtrdot
|⋗
|
|\lll
|⋘
|
|\ggg
|⋙
|
|\lesseqgtr
|⋚
|
|\gtreqless
|⋛
|
|\eqslantless
|⋜
|
|\eqslantgtr
|⋝
|
|\curlyeqprec
|⋞
|
|\curlyeqsucc
|⋟
|
|\not\curlyeqprec
|⋠
|
|\not\curlyeqsucc
|⋡
|
|\not\sqsubseteq
|⋢
|
|\not\sqsupseteq
|⋣
|
|\lnsim
|⋦
|
|\gnsim
|⋧
|
|\precnsim
|⋨
|
|\succnsim
|⋩
|
|\ntriangleleft
|⋪
|
|\ntriangleright
|⋫
|
|\ntrianglelefteq
|⋬
|
|\ntrianglerighteq
|⋭
|
|\vdots
|⋮
|
|\cdots
|⋯
|
|\ddotsup
|⋰
|
|\ddots
|⋱
|
|\spadesuit
|♠
|
|\heartsuit
|♡
|
|\diamondsuit
|♢
|
|\clubsuit
|♣
|
|\spadesuit
|♤
|
|\heartsuit
|♥
|
|\diamondsuit
|♦
|
|\clubsuit
|♧
|
|\flat
|♭
|
|\natural
|♮
|
|\sharp
|♯
|